Lineare Regression

This commit is contained in:
dev weycloud
2021-11-14 17:24:14 +01:00
parent 402383f289
commit ea08ba9b18
7 changed files with 174 additions and 4 deletions

View File

@@ -46,3 +46,7 @@
- Listen und Arrays
- ```Uebung1.py```
- ToDo: ```Uebung2.py```
# Vorlesung 5
11.11.2021
- ```Vorlesung V.pdf```

View File

@@ -1,7 +1,12 @@
import os
import pandas as pd
import numpy as np
df = pd.read_csv('/home/pi/Documents/Code/Python/ProgrammierungUndDatenanalyse/Sonstiges/STAT2/vl2-varianz-v1.csv')
# location will help to open files in the same directory as the py-script
__location__ = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
df = pd.read_csv(os.path.join(__location__, 'vl2-varianz-v1.csv'))
# Dataframe
print(df)

View File

@@ -1,7 +1,12 @@
import os
import pandas as pd
import numpy as np
df = pd.read_csv('/home/pi/Documents/Code/Python/ProgrammierungUndDatenanalyse/Sonstiges/STAT2/vl3-standardfehler.csv')
# location will help to open files in the same directory as the py-script
__location__ = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
df = pd.read_csv(os.path.join(__location__, 'vl3-standardfehler.csv'))
# Dataframe
print(df)
@@ -27,14 +32,28 @@ for index, row in df.iterrows():
summeQuadrierteAbweichungen = summeQuadrierteAbweichungen + (row.freq * (row.x - mean)**2)
print(row['x'], row['freq'], 'summe²abweichungen: ', summeQuadrierteAbweichungen)
variance = variancePart1 * summeQuadrierteAbweichungen
print("variance: ", variance)
print("pop variance: ", variance)
# √(^σ²)
standardDev = variance**(1/2) # √n = n^1/2
print("Standardabweichung: ", standardDev)
print("pop Standardabweichung: ", standardDev)
# √(ŝd / freq)
standardfehler = standardDev / sums.freq**(1/2) # √n = n^1/2
print("Standardfehler des Mittelwerts: ", standardfehler)
# "Bonus":
# Mittelwertsverteilung bei 2 Würfeln
print()
import random

View File

@@ -0,0 +1,6 @@
x,freq
1,159
2,500
3,674
4,110
5,21
1 x freq
2 1 159
3 2 500
4 3 674
5 4 110
6 5 21

View File

@@ -0,0 +1,57 @@
import pandas as pd
import numpy as np
df = pd.read_csv('/home/pi/Documents/Code/Python/ProgrammierungUndDatenanalyse/Sonstiges/STAT2/vl4-zufriedenheit.csv')
# Dataframe
print(df)
print(df.sum())
sums = df.sum()
print('Summierte Häufigkeit: ', sums['freq'])
# Calculate Mean, respecting frequencies
# Σ(freq*(x - mean)) / freq
rowSum = 0
for index, row in df.iterrows():
rowSum = rowSum + row.x * row.freq
mean = rowSum / sums.freq
print("mean: ", mean)
# Geschätzte Populationsvarianz, unter Beachtung der Häufigkeiten
# Sample Variance: ^σ² = (1 / freq - 1) * Σ(freq*(x - mean)²)
variancePart1 = (1 / (sums.freq - 1))
summeQuadrierteAbweichungen = 0
for index, row in df.iterrows():
summeQuadrierteAbweichungen = summeQuadrierteAbweichungen + (row.freq * (row.x - mean)**2)
print(row['x'], row['freq'], 'summe²abweichungen: ', summeQuadrierteAbweichungen)
variance = variancePart1 * summeQuadrierteAbweichungen
print("pop variance: ", variance)
# √(^σ²)
standardDev = variance**(1/2) # √(^σ²) = ^σ²^1/2
print("pop Standardabweichung: ", standardDev)
# √(ŝd / freq)
standardfehler = (variance / sums.freq)**(1/2) # √(ŝd / freq)
print("Standardfehler des Mittelwerts: ", standardfehler)
# konf95,5 = mean -+ 2 * standardfehler
konf955unten = mean - 2 * standardfehler
konf955oben = mean + 2 * standardfehler
print("95,5% Konfidenzintervall ", konf955unten, konf955oben)
# konf95 = mean -+ 1,96 * standardfehler
konf95unten = mean - 1.96 * standardfehler
konf95oben = mean + 1.96 * standardfehler
print("95% Konfidenzintervall ", konf95unten, konf95oben)
# z-Wert = (xi - mean) / standardDev
# z-Wert von 1,00 Ausgezeichnet
zwert1 = (1 - mean) / standardDev
print("zwert1", zwert1)
# z-Wert von 5,00 Schlecht
zwert5 = (5 - mean) / standardDev
print("zwert5", zwert5)

Binary file not shown.

View File

@@ -0,0 +1,79 @@
# https://towardsdatascience.com/five-regression-python-modules-that-every-data-scientist-must-know-a4e03a886853
# or https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/
# pip3 install openpyxl
from numpy.matrixlib import defmatrix
import os
import pandas as pd # To read data
import math as m
import numpy as np
import scipy as sp
from scipy import stats
import matplotlib.pyplot as plt # To visualize
# location will help to open files in the same directory as the py-script
__location__ = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
df = pd.read_excel(os.path.join(__location__,'Daten_Umfrage_SPSS_20211113.xlsx'))
df = df.apply(pd.to_numeric, errors='coerce') # convert non-numeric values to NaN, e.g. Header "row 1" "CodeXYZ" -> "row 1" "NaN"
print("Dataframe (Zeilen, Spalten, ...) inkl. NaN:", df.shape)
print(df.head(10))
# Code SE01_01 SE01_02 SE02_01 SE02_02 SE03_01
# 0 NaN NaN NaN NaN NaN NaN
# 1 NaN 6.0 4.0 7.0 4.0 5.0
# ...
#df = df.dropna() # CAUTION: drops every row that even contains single NaN !
print(df.tail(10))
# Code SE01_01 SE01_02 SE02_01 SE02_02 SE03_01
# 155 NaN 4.0 4.0 3.0 5.0 1.0
# 156 NaN NaN NaN NaN NaN NaN
# (End of File)
#print(df["HO_Score_Bewerbung_Gewichtet"][105:110])
#for col in df.columns:
#print(col)
# Calculate Mean, gew, inv
mwHO01_Diff = df["HO01_Diff"][1:156].mean(skipna=True) # skipna to ignore NaN rows
mwHO01_Diff = round(mwHO01_Diff, 2)
gewHO01_Diff = m.sqrt((mwHO01_Diff / 6)**2)
invHO01_Diff = 1 - gewHO01_Diff
# usw
print("HO01_Diff Mittelwert:", mwHO01_Diff)
print("HO01_Diff Gewichtet:", gewHO01_Diff)
print("HO01_Diff Invertiert:", invHO01_Diff)
# usw
# Limit Dataframe Column and row Amount
dfColumnX = df["SS_Score"][1:156]
dfColumnY = df["HO_Score_Bewerbung_Gewichtet"][1:156]
# Convert Dataframe Columns to Array containing the X- and Y- Values
arrX = np.asarray(dfColumnX) # convert that dataframe column to numpy array
arrY = np.asarray(dfColumnY)
# Prepare Plot Image
plt.xlabel('SS_Score', color='black')
plt.ylabel('HO_Score_Bewerbung_Gewichtet', color='black')
plt.xlim([0,50]) # set x-Axis View Range,[from,to]
plt.scatter(arrX, arrY)
arrX, arrY = zip(*sorted(zip(arrX,arrY))) # sort 2 arrays in sync
# Convert again, as sorting seemed break the numpy array data format
arrX = np.asarray(arrX) # before: "1 16.0" after: "[16. 18. 21. ...]"
arrY = np.asarray(arrY)
# Use least Square Linear Regression from SciPy Stats
regr_results = sp.stats.linregress(arrX, arrY)
steigung = regr_results.slope
yAchsAbschn = regr_results.intercept
arrYpredicted = steigung * arrX + yAchsAbschn # using y = m*x + n, calculate every single Y-Value fitting the regression Lines X-Values
print("y =", steigung, "* x +", yAchsAbschn)
# Plot Linear Regression Line
plt.plot(arrX, arrYpredicted, label='Lin Regr', color='red', linestyle='solid') # https://scriptverse.academy/tutorials/python-matplotlib-plot-straight-line.html
plt.show()