79 lines
3.3 KiB
Python
79 lines
3.3 KiB
Python
# https://towardsdatascience.com/five-regression-python-modules-that-every-data-scientist-must-know-a4e03a886853
|
|
# or https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/
|
|
# pip3 install openpyxl
|
|
from numpy.matrixlib import defmatrix
|
|
import os
|
|
import pandas as pd # To read data
|
|
import math as m
|
|
import numpy as np
|
|
import scipy as sp
|
|
from scipy import stats
|
|
import matplotlib.pyplot as plt # To visualize
|
|
|
|
# location will help to open files in the same directory as the py-script
|
|
__location__ = os.path.realpath(
|
|
os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
|
|
|
df = pd.read_excel(os.path.join(__location__,'Daten_Umfrage_SPSS_20211113.xlsx'))
|
|
|
|
df = df.apply(pd.to_numeric, errors='coerce') # convert non-numeric values to NaN, e.g. Header "row 1" "CodeXYZ" -> "row 1" "NaN"
|
|
print("Dataframe (Zeilen, Spalten, ...) inkl. NaN:", df.shape)
|
|
print(df.head(10))
|
|
# Code SE01_01 SE01_02 SE02_01 SE02_02 SE03_01
|
|
# 0 NaN NaN NaN NaN NaN NaN
|
|
# 1 NaN 6.0 4.0 7.0 4.0 5.0
|
|
# ...
|
|
#df = df.dropna() # CAUTION: drops every row that even contains single NaN !
|
|
|
|
print(df.tail(10))
|
|
# Code SE01_01 SE01_02 SE02_01 SE02_02 SE03_01
|
|
# 155 NaN 4.0 4.0 3.0 5.0 1.0
|
|
# 156 NaN NaN NaN NaN NaN NaN
|
|
# (End of File)
|
|
|
|
#print(df["HO_Score_Bewerbung_Gewichtet"][105:110])
|
|
#for col in df.columns:
|
|
#print(col)
|
|
|
|
# Calculate Mean, gew, inv
|
|
mwHO01_Diff = df["HO01_Diff"][1:156].mean(skipna=True) # skipna to ignore NaN rows
|
|
mwHO01_Diff = round(mwHO01_Diff, 2)
|
|
gewHO01_Diff = m.sqrt((mwHO01_Diff / 6)**2)
|
|
invHO01_Diff = 1 - gewHO01_Diff
|
|
# usw
|
|
print("HO01_Diff Mittelwert:", mwHO01_Diff)
|
|
print("HO01_Diff Gewichtet:", gewHO01_Diff)
|
|
print("HO01_Diff Invertiert:", invHO01_Diff)
|
|
# usw
|
|
|
|
# Limit Dataframe Column and row Amount
|
|
dfColumnX = df["SS_Score"][1:156]
|
|
dfColumnY = df["HO_Score_Bewerbung_Gewichtet"][1:156]
|
|
|
|
# Convert Dataframe Columns to Array containing the X- and Y- Values
|
|
arrX = np.asarray(dfColumnX) # convert that dataframe column to numpy array
|
|
arrY = np.asarray(dfColumnY)
|
|
|
|
# Prepare Plot Image
|
|
plt.xlabel('SS_Score', color='black')
|
|
plt.ylabel('HO_Score_Bewerbung_Gewichtet', color='black')
|
|
plt.xlim([0,50]) # set x-Axis View Range,[from,to]
|
|
plt.scatter(arrX, arrY)
|
|
|
|
arrX, arrY = zip(*sorted(zip(arrX,arrY))) # sort 2 arrays in sync
|
|
|
|
# Convert again, as sorting seemed break the numpy array data format
|
|
arrX = np.asarray(arrX) # before: "1 16.0" after: "[16. 18. 21. ...]"
|
|
arrY = np.asarray(arrY)
|
|
|
|
# Use least Square Linear Regression from SciPy Stats
|
|
regr_results = sp.stats.linregress(arrX, arrY)
|
|
steigung = regr_results.slope
|
|
yAchsAbschn = regr_results.intercept
|
|
arrYpredicted = steigung * arrX + yAchsAbschn # using y = m*x + n, calculate every single Y-Value fitting the regression Lines X-Values
|
|
|
|
print("y =", steigung, "* x +", yAchsAbschn)
|
|
|
|
# Plot Linear Regression Line
|
|
plt.plot(arrX, arrYpredicted, label='Lin Regr', color='red', linestyle='solid') # https://scriptverse.academy/tutorials/python-matplotlib-plot-straight-line.html
|
|
plt.show() |