Vorlesung 4
This commit is contained in:
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
.vscode/settings.json
|
||||||
@@ -38,4 +38,11 @@
|
|||||||
- ```kontrollstukturen.py```
|
- ```kontrollstukturen.py```
|
||||||
- ```Uebung1.py```
|
- ```Uebung1.py```
|
||||||
- Schleifen
|
- Schleifen
|
||||||
- ```Uebung2.py```
|
- ```Uebung2.py```
|
||||||
|
|
||||||
|
# Vorlesung 4
|
||||||
|
07.10.2021
|
||||||
|
- ```Vorlesung IV.pdf```
|
||||||
|
- Listen und Arrays
|
||||||
|
- ```Uebung1.py```
|
||||||
|
- ToDo: ```Uebung2.py```
|
||||||
|
|||||||
6
Sonstiges/STAT2/vl2-varianz-v1.csv
Normal file
6
Sonstiges/STAT2/vl2-varianz-v1.csv
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
x,freq
|
||||||
|
1,9
|
||||||
|
2,7
|
||||||
|
3,5
|
||||||
|
4,4
|
||||||
|
5,2
|
||||||
|
37
Sonstiges/STAT2/vl2-varianz-v1.py
Normal file
37
Sonstiges/STAT2/vl2-varianz-v1.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
df = pd.read_csv('/home/pi/Documents/Code/Python/ProgrammierungUndDatenanalyse/Sonstiges/STAT2/vl2-varianz-v1.csv')
|
||||||
|
|
||||||
|
# Dataframe
|
||||||
|
print(df)
|
||||||
|
# x freq
|
||||||
|
# 0 1 9
|
||||||
|
# 1 2 7
|
||||||
|
# 2 3 5
|
||||||
|
# 3 4 4
|
||||||
|
# 4 5 2
|
||||||
|
print(df.sum())
|
||||||
|
# x 15
|
||||||
|
# freq 27
|
||||||
|
sums = df.sum()
|
||||||
|
print(sums['freq'])
|
||||||
|
# 27
|
||||||
|
|
||||||
|
# Calculate Mean, respecting frequencies
|
||||||
|
rowSum = 0
|
||||||
|
for index, row in df.iterrows():
|
||||||
|
rowSum = rowSum + row.x * row.freq
|
||||||
|
mean = rowSum / sums.freq
|
||||||
|
print("mean: ", mean)
|
||||||
|
|
||||||
|
# Calculate Variance, respecting frequencies
|
||||||
|
# Sample Variance: ^σ² = (1 / n - 1) * Σ(freq*(x - mean)²)
|
||||||
|
variancePart1 = (1 / (sums.freq - 1))
|
||||||
|
variancePart2 = 0
|
||||||
|
for index, row in df.iterrows():
|
||||||
|
variancePart2 = variancePart2 + (row.freq * (row.x - mean)**2)
|
||||||
|
print(row['x'], row['freq'], variancePart2)
|
||||||
|
variance = variancePart1 * variancePart2
|
||||||
|
print("variance: ", variance)
|
||||||
|
# variance: 1.703703703703704
|
||||||
43
Sonstiges/linearfunction.py
Normal file
43
Sonstiges/linearfunction.py
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
# Entry Level, Single Machine
|
||||||
|
|
||||||
|
# https://jupyter.org/try
|
||||||
|
# oder:
|
||||||
|
# apt-get install libatlas-base-dev
|
||||||
|
# pip3 install numpy
|
||||||
|
# (pip install matplotlib==2.0.2 (py2: sonst Problem mit "functools_lru_cache"))
|
||||||
|
# sudo apt-get install python-scipy
|
||||||
|
# sudo apt update
|
||||||
|
# sudo apt install libatlas-base-dev
|
||||||
|
# pip3 install pybind11
|
||||||
|
# pip3 install scipy
|
||||||
|
# apt install python3-gi-cairo
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
x = np.linspace(0,5,100) # Start und Ende der x-Achse
|
||||||
|
plt.figure(figsize=(10,8)) # Inches
|
||||||
|
plt.title('Entry Level, Single Machine')
|
||||||
|
plt.xlabel('Jahre', color='black')
|
||||||
|
plt.ylabel('Euro', color='black')
|
||||||
|
|
||||||
|
# NW-110 Essential
|
||||||
|
y = 240*x+190
|
||||||
|
plt.plot(x, y, label='NW-110 Essential', color='blue', linestyle='solid')
|
||||||
|
|
||||||
|
# NW-140 Essential
|
||||||
|
y = 360*x+190
|
||||||
|
plt.plot(x, y, label='NW-140 Essential', color='darkblue', linestyle='dashed')
|
||||||
|
|
||||||
|
# FG-30E FortiCare
|
||||||
|
y = 80*x+393
|
||||||
|
plt.plot(x, y, label='FG-30E FortiCare', color='lightgreen', linestyle='dotted')
|
||||||
|
|
||||||
|
# FG-40F FortiCare
|
||||||
|
y = 91*x+453
|
||||||
|
plt.plot(x, y, label='FG-40F FortiCare', color='green', linestyle='dashdot')
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
plt.legend(loc='upper left')
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
8
Sonstiges/spss-import.py
Normal file
8
Sonstiges/spss-import.py
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
# pip3 install pyreadstat
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import pyreadstat
|
||||||
|
|
||||||
|
df, meta = pyreadstat.read_sav('/home/pi/Downloads/ESS9e03 (2018).sav')
|
||||||
|
|
||||||
|
print(df.head())
|
||||||
65
Vorlesung 4/Uebung1.py
Normal file
65
Vorlesung 4/Uebung1.py
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
# Große Datenmenge > 1000 Datensätze
|
||||||
|
from statistics import mean, median, stdev, variance # z.b. mean(list)
|
||||||
|
|
||||||
|
def inputNumericString(inp):
|
||||||
|
try:
|
||||||
|
float(inp)
|
||||||
|
except ValueError:
|
||||||
|
print("Could not convert Data to an integer")
|
||||||
|
else:
|
||||||
|
return float(inp).inputNumericString()
|
||||||
|
|
||||||
|
list = []
|
||||||
|
print("Bitte geben Sie Ihre ersten 5 Modulnoten ein")
|
||||||
|
list.append(int(input("Bitte geben Sie die nächste Modulnote ein: ")))
|
||||||
|
list.append(int(input("Bitte geben Sie die nächste Modulnote ein: ")))
|
||||||
|
list.append(int(input("Bitte geben Sie die nächste Modulnote ein: ")))
|
||||||
|
list.append(int(input("Bitte geben Sie die nächste Modulnote ein: ")))
|
||||||
|
list.append(int(input("Bitte geben Sie die nächste Modulnote ein: ")))
|
||||||
|
# Weitere: .clear() .count(el) .extend(otherList) .index(el) .insert(pos,el) .len() .remove(el) .reverse .sort(reverse)
|
||||||
|
|
||||||
|
# 1.1
|
||||||
|
modus = input("Bitte geben Sie 's' ein, wenn sie die Liste sortiert ausgeben möchten.")
|
||||||
|
if modus != "s":
|
||||||
|
print("Unsortiert: ", list)
|
||||||
|
else:
|
||||||
|
list.sort()
|
||||||
|
print("Sortiert: ", list)
|
||||||
|
|
||||||
|
# 1.2
|
||||||
|
needle = int(input("Welche Note soll gesucht werden?: "))
|
||||||
|
i=0
|
||||||
|
while i < len(list):
|
||||||
|
if i < len(list):
|
||||||
|
try:
|
||||||
|
print("Die Note", needle, "ist an Listen-Position: ", list.index(needle, i, i+1)) # from pos i to pos i
|
||||||
|
pass # not: break
|
||||||
|
except ValueError:
|
||||||
|
# triggers in every item, that doesnt match the needle
|
||||||
|
pass # not: break
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
# 1.3
|
||||||
|
print("Min: ", min(list))
|
||||||
|
print("Max: ", max(list))
|
||||||
|
print("Median: ", median(list))
|
||||||
|
print("Mittelwert: ", mean(list))
|
||||||
|
print("Varianz: ", variance(list))
|
||||||
|
print("Standardabweichung: ", stdev(list))
|
||||||
|
list.remove(5)
|
||||||
|
print("Median (ohne 5en): ", median(list))
|
||||||
|
print("Mittelwert (ohne 5en): ", mean(list))
|
||||||
|
|
||||||
|
# 1.4
|
||||||
|
eingabe = input('Wenn gewünscht, geben Sie bitte eine weitere Note (1-5) ein: ')
|
||||||
|
if eingabe == '1' or eingabe == '2' or eingabe == '3' or eingabe == '4' or eingabe == '5':
|
||||||
|
neueZahl = int(eingabe)
|
||||||
|
#print(list[list.count()])
|
||||||
|
#storedLastItem = list[len(list)-1] # Store last item..
|
||||||
|
#list.append(storedLastItem)
|
||||||
|
#list.insert(0, neueZahl)
|
||||||
|
list.append(neueZahl)
|
||||||
|
#list.append(storedLastItem) # ReStore last item
|
||||||
|
print(list)
|
||||||
|
else:
|
||||||
|
print('Anzahl der Modulnoten: ', list.count())
|
||||||
Reference in New Issue
Block a user