Lineare Regression

This commit is contained in:
dev weycloud
2021-11-14 17:24:14 +01:00
parent 402383f289
commit ea08ba9b18
7 changed files with 174 additions and 4 deletions

View File

@@ -1,7 +1,12 @@
import os
import pandas as pd
import numpy as np
df = pd.read_csv('/home/pi/Documents/Code/Python/ProgrammierungUndDatenanalyse/Sonstiges/STAT2/vl3-standardfehler.csv')
# location will help to open files in the same directory as the py-script
__location__ = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
df = pd.read_csv(os.path.join(__location__, 'vl3-standardfehler.csv'))
# Dataframe
print(df)
@@ -27,14 +32,28 @@ for index, row in df.iterrows():
summeQuadrierteAbweichungen = summeQuadrierteAbweichungen + (row.freq * (row.x - mean)**2)
print(row['x'], row['freq'], 'summe²abweichungen: ', summeQuadrierteAbweichungen)
variance = variancePart1 * summeQuadrierteAbweichungen
print("variance: ", variance)
print("pop variance: ", variance)
# √(^σ²)
standardDev = variance**(1/2) # √n = n^1/2
print("Standardabweichung: ", standardDev)
print("pop Standardabweichung: ", standardDev)
# √(ŝd / freq)
standardfehler = standardDev / sums.freq**(1/2) # √n = n^1/2
print("Standardfehler des Mittelwerts: ", standardfehler)
# "Bonus":
# Mittelwertsverteilung bei 2 Würfeln
print()
import random